a2 United States Patent

Jacob Da Silva et al.

US009148389B2

US 9,148,389 B2
Sep. 29, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEM AND METHOD FOR A VIRTUAL
CHASSIS SYSTEM
(71) Applicants:Roberto H. Jacob Da Silva, Oak Park,
CA (US); Gregory G. Page, Sandy, UT
(US); Surajit Bhattacharya, Thousand
Oaks, CA (US); Chung-Hua Chang,
Temple City, CA (US); Stephen C.
Hanka, Lindon, UT (US); Steve Larsen,
Riverton, UT (US); Christopher
Francis Ravenscroft, Woodland Hills,
CA (US); Eric W. Tolliver, Moorpark,
CA (US); Anand Vinayagam, Oak Park,
CA (US); Shaofu Wu, West Hills, CA
(US); Ignatius D. Santoso, Thousand
Oaks, CA (US); Nalinakshan Kunnath,
Camarillo, CA (US); Stephen R. Bates,
Salt Lake City, UT (US)
Roberto H. Jacob Da Silva, Oak Park,
CA (US); Gregory G. Page, Sandy, UT
(US); Surajit Bhattacharya, Thousand
Oaks, CA (US); Chung-Hua Chang,
Temple City, CA (US); Stephen C.
Hanka, Lindon, UT (US); Steve Larsen,
Riverton, UT (US); Christopher
Francis Ravenscroft, Woodland Hills,
CA (US); Eric W. Tolliver, Moorpark,
CA (US); Anand Vinayagam, Oak Park,
CA (US); Shaofu Wu, West Hills, CA
(US); Ignatius D. Santoso, Thousand
Oaks, CA (US); Nalinakshan Kunnath,
Camarillo, CA (US); Stephen R. Bates,
Salt Lake City, UT (US)
Alcatel Lucent, Boulogne-Billiancourt
(FR)
Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 394 days.
Appl. No.: 13/674,259
Filed: Nov. 12, 2012

Prior Publication Data
US 2013/0077621 Al Mar. 28, 2013
Related U.S. Application Data

(72) Inventors:

(73)

")

Assignee:

Notice:

(21)
(22)

(65)

(63) Continuation-in-part of application No. 13/010,168,

filed on Jan. 20, 2011, now Pat. No. 8,767,735.

(60) Provisional application No. 61/370,622, filed on Aug.
4, 2010, provisional application No. 61/658,159, filed
on Jun. 11, 2012.
(51) Imnt.ClL
HO4L 12/939 (2013.01)
HO4L 12/775 (2013.01)
HO4L 12/709 (2013.01)
HO4L 12/931 (2013.01)
HO4L 12/707 (2013.01)
HO4L 12/703 (2013.01)
(52) US.CL
CPC HO4L 49/552 (2013.01); HO4L 45/245
(2013.01); HO4L 45/58 (2013.01); HO4L 49/40
(2013.01); HO4L 49/70 (2013.01); HO4L 45/22
(2013.01); HO4L 45/28 (2013.01)
(58) Field of Classification Search
CPC ... HO4L 49/70; HO4L 45/586; HOAL 45/583;
HOAL 45/58; HO4L 49/357; HOAL 45/245
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,483,383 B2 1/2009 Santoso et al.

7,505,403 B2 3/2009 Santoso et al.
2005/0259649 Al* 11/2005 Smithcooveviieirnrnn 370/389
2011/0085559 Al* 4/2011 Chungetal. 370/401
2011/0149743 Al* 6/2011 Agarwal et al. . .. 370/242
2013/0243008 Al* 9/2013 Singlaetal.c........ 370/422

* cited by examiner

Primary Examiner — Jung Park
(74) Attorney, Agent, or Firm — Loza & Loza, LLP

(57) ABSTRACT

A virtual chassis system includes a plurality of network nodes
configured with a master virtual chassis address. The network
nodes are connected by virtual fabric link (VFLs) that provide
a connection for exchange of packets between the network
nodes. The packets include source MAC addresses and asso-
ciated hardware device information, such as source chassis
1D, source network interface identifier and source port iden-
tifier information. The network nodes use this information to
maintain synchronized MAC address tables for forwarding of
packets in the virtual chassis system.

13 Claims, 16 Drawing Sheets

750
~

752

Select destination of
output of debug function

Store standard output
file descriptor

754
~

Redirect standard output
file descriptor to selected
destination/directory

Restore standard output
file descriptor

758
I~

US 9,148,389 B2

Sheet 1 of 16

Sep. 29, 2015

U.S. Patent

e *bi4
||||||||||||||||||||||||| moﬂw_mym\hwlw_mﬁmmon_m:w_wl||||||||||||||||||||||||
E=QISSSEYD pqap g=qldn| SO PR
——0Z} T4A—
0=l4A
901} qo41
apoN yomey F=dIHA 8pON YJoMIBN
=aEA <
mun__n_i Z=ai3N NV\A
oo 2 /
» L £=aldA

L
#=ql sisseyd \a y L=(l sissey)

POLL A&, (1e1se) 204}
SPONHOVIEN e SPON YOMON
=Q1aA
_ g X
1=al3A /2=0l3 o o
G=ql SISsey) =(| sisse
p=a13A SFUSSEY
el TIA—
2=Ql4A
S0 104}
BPON %I0M3N 8pON HoMjaN

qZl} SPoN [euwsix3 BZ| | SPON [eUgjX]

U.S. Patent Sep. 29, 2015 Sheet 2 of 16 US 9,148,389 B2

I I
I I
| Network Node Network Node !
110 110 '
i —VFL 120— |
| |
, S N |
| & | Chassis ID=6 Chassis ID=5 \&2 !
| & 2 :
| / K |
! |
: Network Node Network Node :
| 110 110 !
| |
. |
I Chasss\ ID=1 Chassis D=4 | !
|
: k’? ,\f@/ i
: 790\ Network Node Network Node | &™ |
| 110 1o |
| |
| VFL 12— i
! Chassis ID=2 Chassis ID=3 !
I I
| Virtual Chassis System 100 !
Fig. 1b
e i
|
! Network Node Network Node :
| 110 1 10 |
l N, N !
i "2 [Network Nod /“Q\' Chassis D=4 '
N~ etwork Node assis ID= |
i Chassis ID=2 0\ 110 |
| |
| |
| . N |
! Network Node \;\‘L“/ Chassis ID=1 | ~/%y 4, | Network Node I
! 110 A\ ?0\ 110 |
: S :
| |
|
i Chassis ID=3 Chassis ID=5 :
| |

US 9,148,389 B2

Sheet 3 of 16

Sep. 29, 2015

U.S. Patent

D=JVI € SISsey)
g=0VIA Z S1sseyd
V=OVIA | SIsseyd
XU OVIN
Y=OVIN X, Uojeolddy
Y=0VW SISSeyD [entiA
D=0V sIssey) [e007

v | aseqejeq ABojodo |

—0Z1 14A

(9Ae[S) £=q] sissey)
90} 9PON omaN

¢ Big

D=0V € sIsseyd
g=0vI Z sisseyd
Y=0YI | sisseyd
xe OvIN
v=0VI\ .X, uoneolddy
Y=0VIN S1SseyD [enpIA
g=0VIN SIssey) [eo07]

pp| aseqejeq ABojodo |

(ane|g) z=q sisseyd
qO} | SPON 3IOM}aN

N

7,
<
&

N

D=0V € sIsseyd
g=0vI Z sisseyd
Y=0VI\ | Sisseyd
XUIBN OYIN
v=0VI\ X, Uoneonddy
V=0V SISs_yD [enpiA
V=0V Sissey) (890

vl eseqeieq ABojodo|

(1o)se|N) 1=q Ssseyd
B0} | SPON }ioMjeN

/

D
L

z b4

7~
8t

wialsAg sisseyn
[ENUIA 1O SNEIS JIONUOJ

9gl

ssalppe OV
Ja)sey 1dope pue opoN

WIOMISN Jajse| e 109jeg

Vel

asegele(
AbBojodo] ping

cel

SPON sIsseyd [endin
e ul Bunesado sulueleq

0gl

US 9,148,389 B2

Sheet 4 of 16

Sep. 29, 2015

U.S. Patent

0cl 212 ANPOW e_w%_u_nz N
WD Buineng) N
Buyopms K

£=Ql SISSeUD 90} | 9PONBHOMON b=(lldA

oSl 21z &Inpow eﬁm_ﬁ_\uz
NND Buinenp B

UOIMS

UQY | 1UBWIIT HOMION SigEy0e)S
u

0=0I2A
0s) 212 3Inpol orzonon [
WD Buineny Buowms [
Q0P) 1ueWa|3 Yoma SjqexoeIs
0=QI2A
0} Z1Z einpoiy omm%_u_\n,_ﬁ -
WD Buinanp 6 o

UIYIPMS
WU J9ISE — EQY} JUBWISIT HIOMIaN SIGEXOEIS

2201 S50
- 404} 3PON iomaN

qoZ1 1A

g39sqng
BOZ) 14A

viesqng
BOZL 1A

v Bid
L=q] sisseyn
B0 | 8PON JomieN
N
NN e=am
NN uosz ainpow iz .
N Buiyoymsg ajnpojy buinenp
e=alan UZG| o[npopy aoeuiaiul yIoMaN
|
. 9
u 1l
I
L=QIN M
— iz awiz S
L] qo1¢ einpoly
LT Buyoums a|npojy Buinanp ;
£€=aldA qZG| S|NPO 80eUBIU| YIOMBN M_“_
g
v
] mo—oMum__:_\Mo_\,_ TANA 4
NH Buiyonms a|npoj Bunanp L
E=d=A BZG) S|NpO| 20eH9)U| JIOMISN 1474
q0S1 eQg)
g WD Aiepuodsg WIND Aletg

US 9,148,389 B2

Sheet 5 of 16

Sep. 29, 2015

U.S. Patent

9 b1
133 1€ Xxepy| ¢l ¢ sselppy 1€ sseippy 80¢ 90€ aI NYIA ¥0E 20¢
Auoud 1oxoed | Buiouereg peaq | Oviy uoneupseq | DviN soaos | adAL exoed IQH uoneusseq | |QH aoinog
00€ JopesH papuad-aid
g Bi4
| 99¢ ajnpojy Buisssooid
A

ual 012 @Inpojy Buiyoums
yod [< Z1Z 8inpojy Buinanp

° 89z owsi

8|qe ssalppy bz

° 474 52 9|qe] 9|qe ssaippy

. Id Bugnoy IaH 129019
valle, THA 3
Jog
eal 0gz eIgeL

> 70z Juswwobeuep
HOg |QH/OVIN aneno
cal [, .
- o 3 P12 YoUMS
L Al e NNd dugeq 0l
g | e I OZHdd [* -~
apeay papuad 092 Jeyng Japeay papuad

00l > a1d yym joxoed 1aoed -8ld Yimjaxoed

0 H

\/\t < 0
174 €S5S¢ Hod TdA
=didh H 021 T4A

US 9,148,389 B2

Sheet 6 of 16

Sep. 29, 2015

U.S. Patent

€=didA 9=ql Mod ‘Zr=aIN | ™ L=l SISSeYD ‘BQ |} SPON YOm}oN
usy) Z=q| sissey 'Z=0l sissey) =~
14 — OVIN uoneunse(S~ - UZG|} 9NpOLY 82eHa)U| JIOMaN
[qeL bUlNoY 1A ¢ 9Iqe L IJH/OVIN 8VZ SOIGEL
~
~ ssalppy
le=aIn » uz|z a|npojy Buienant)
00¢ o] Z=a1] uoizampow .
201A8(Q ~1 uod Buiyoums
ove
LOVIN SSaIppE DY 82In0g
SSaIPPY IV 82IN0S lojpue uogeunsa Ym pajelosse H
—
pue oYW ssalppy OV uonewoul so1Aap alempiey Buipnjul o)
uoneunsaq yum Jexoed Japeay papuad-aid ym jo0Bd 1
I
@l 74A Buiobyno o) Buipuodsauos | M
IIN O} Juss Jaxoed ‘apou S
yJ0oM}aU 8)jowal Uo S| uoneunsap
Z=ql sissey) Sejedlpul |gH uoneunsap usym 2
LM BPON HIOMIaN) £=CIIA :
UM T4A JoA0 pajiwsuel) ssalppe d
IV 82.N0S Jo/pue uojjeunsaq g
pim pajeioosse [gH Buipnjour g spod 1/
Japeay papuad-aid Yym 1axoed 74 8Y} Jo 8uO Joj ananb uj Jexoed d
N
¢=q sisseyp 0=CIN
‘4 G0} | SPON B01Z SINPON -——— ©7|,Z 3|npojy Buisnanp
JIoMBN 0] £=WAA BuyMg
yim o ~
02} A vie
BZG| 9|NPOjy 29eUaju| YJoMaN
LBl4

US 9,148,389 B2

Sheet 7 of 16

Sep. 29, 2015

U.S. Patent

(Jayojedsiq enanp
‘19AUQ 8nanp))
79z uawabeuey
ananp

g ‘B4

ZG1 IN pajeubisaq

v07 WIN-INOA

A

8Ly
a|npojy uonesiddy
laBeuep 1od

]84
a|npojy uonealddy
uonebalbby yurq

00t Jebeuepy
sisseyy [enpip

ey
a|npoy Jabeuey
uone.nbyuon

ZvZ NINd
0Lg
DISY buiyoums

0Ct eINpoiN
Josinzedng
sisseyn

Y

c0r IWINO-INOA

s ____
\ 051 WND Alewig

vy
a|npojy uonedlddy
Buiurea 82inog

Zly 8npopy
uopeolddy 415

yzp lebeuep
Sisseyd-mn

90 eINPony
labeuepy Juswa|3

Oly
a|npojy uoneaddy

1abeuely NYIA

80y suopeol|ddy
pala)sibay 18410

U.S. Patent

Sep. 29, 2015

Sheet 8 of 16

US 9,148,389 B2

Verify virtual chassis
configurations

Boot Configuration Module 440 (boot cfg) Configuration Manager Module 422
Network Node 110, Chassis ID=1
Application VC Manager
Configuration Configuration
442 446a
Virtual Chassis Made Configuration Module 450
Chassis Specific Application Configuration 458
CO”?”“?” X , VC Manager
Application Chassis Chassis Chassis Configuration
Configuration ID=1 D=2 ID=n 446b
456 458a 458b 458n
VC Setup Module 460
VC Boot Configuration Module 452 (vchoot.cfg) (vcsetup.cfg)
Fig. 9
Start-up of Network 372 470
Node ~
I 474
" VCSetup N
\\Mod ule Present? -~
o 476
LY ~
480 . .
Set VCM parameter Parse Boot Configuration
Module
[
Parse virtual chassis 482 | 478
configuration modules |~/ Iniiate Mutt-Chassis [~
and initiate Virtual manager
Chassis Manager
| 484
I~

Fig. 10

US 9,148,389 B2

Sheet 9 of 16

Sep. 29, 2015

U.S. Patent

008

(ATE

145

ajnpow uofeInByuod
100q DA pablaw ss820.d

Zls

anpow uoneinfyuod
100q DA pablaw ajelauss)

01§

s|npaw uoleinbijuod
100q DA paldod ssasald

809

a|npow uoljenbyucd
1009 DA Jo abisw wiopsd

~
906G

aseqejep Abojodo)
pIINg pUE 8pauU YIom)au JB)se|y 198|3

v0S

anpojy dmag DA ssad0id

7~
¢0S

WOA Ul Bunelado apop ylomiaN

US 9,148,389 B2

Sheet 10 of 16

Sep. 29, 2015

U.S. Patent

z) b
SPOIN SISSEYD [ENUIA
(panes00q) 79y (650-dnjeson) (619300GOA) ZG |INPOIA uoneINdyuo?) 100g DA
3|npojy uoneunbyuo) joog pareg | | 09y Anpol dnjeg QA o
uoneinbiuoy) uoneolddy 9GSy
Zip e9pp oy1adg sisseyn uone.nbyuo)
uoneinbyuoy) | | uoneinbyuoy co_HMwwﬂcoo — cmﬁ_wmo_a%
uoneolddy || Jebeuepy DA E.@mcm_\./_ o =Q SISSELS wwo)
\
N\ ~_
N
~ %147 444
SUIBUST™ - uoneinbiyuo) uoneinbyuo)
——— sebeuely DA uonealjddy

(By03000) Ot BInpoy uoRelnblyuoy joog

3POYN BUOy-PUEIS

US 9,148,389 B2

Sheet 11 of 16

Sep. 29, 2015

U.S. Patent

¢l B4

9POI SISSEYD [ENLIA

(650 dnyoson) (650'300q0A) Gt sNpojy uoleanByuo) joog DA
09 @Npoy dnjas DA
851
uonenbyuon uoneolddy 96§
J1p08dg sisseyn uone.nbijuon
Q9 uofealddy
uoneinbiuon egey uowwo?
labeuepy DA }=ql sisseyd
— R
—_ - ~
sweusy - /
7 /
/ auweuay
/
/ /
y y
(panes dnjason) (peAes100qoA) « « «
89F SINPo 9¥ 8Inpoj uoneinBiyuoy joog OA peres
dnjag DA peres
86y 2tl2% 444
uoneinbyuo) uonedddy 1417 uoneinfyuo) uonelnbyuo)
qott aynadg sisseyn uopeunbyuo) JabeuB DA uoneoyddy
uoneinbiuon egcy uoneayddy e
Jlabeuepy OA 1=q] SIssey) uowwo)
(Byoy009) Off &Inpo|N UoeINBlUOD Joog
apoy sUo|y-pueiS

U.S. Patent

Sep. 29, 2015

Sheet 12 of 16

Network Node 110a
Chassis ID=1 (Master)

Virtual Chas
Application

Chassis 2 MAC=B

Chassis 3 MAC=C

A\

Network Node 110b
Master)

Local Chassis MAC=B
Virtual Chassis MAC=A
Application “X* MAC=A
MAC Matrix
Chassis 2 MAC=B
Chassis 3 MAC=C

Chassis ID=2 (Newly Elected

VFL 120

Fig. 14

Network Node 110c
Chassis ID=3 (Slave)

Local Chassis MAC=C
Virtual Chassis MAC=A
Application "X" MAC=A
MAC Matrix
Chassis 2 MAC=B
Chassis 3 MAC=C

Network Node 110a
Chassis ID=1 (Master)

Virtual Chas
Application

Chassis 2 MAC=B

Chassis 3 MAC=C

A\

Network Node 110b
Master)

Local Chassis MAC=B
Virtual Chassis MAC=B
Application “X” MAC=B
MAC Matrix
Chassis 2 MAC=B
Chassis 3 MAC=C

Chassis ID=2 (Newly Elected

VFL 120

Fig. 15

Network Node 110c
Chassis ID=3 (Slave)

Local Chassis MAC=C
Virtual Chassis MAC=B
Application "X" MAC=B
MAC Matrix
Chassis 2 MAC=B
Chassis 3 MAC=C

US 9,148,389 B2

U.S. Patent Sep. 29, 2015

Sheet 13 of 16 US 9,148,389 B2

Element Manager

Module 406
e ~ N
d N
e
e N
N\ 7/
Network 10a VFL 1202 Network Node 110b
Chassis ID= Master) “ Chassis ID=2 (Newly ElectedMaster)
Nz
/AQ\/
Network Node 110c
Chassis ID=3 (Slave)
Fig. 16
Element Manager
Module 406
- AN
- N
e
e N
i N
Network Node 110a d Network Node 110b
Chassis ID=1 (Prior Master) ¢ Chassis ID=2 (Newly ElectedMaster)
e
/ *Q\,

Network Node 110c
Chassis ID=3 (Slave)

Fig. 17

U.S. Patent Sep. 29, 2015 Sheet 14 of 16 US 9,148,389 B2

Detect communication loss with | 602 600
master network node ~
604
Elect new master network node |~

1

/’//’ \\\ 606

/,/MAC Retentib\rf\v\
< Function

. Operable?

-
. e
~

N

\\

-

1y

T (\6/08
" Prior Master "~
< NetworkNode >

“__Inoperable?

\\\I/// Y ,-\6/1 0 /\6/1 6

N

Retain prior master MAC address

as the virtual chassis MAC address Release prior master MAC address

,\6/12 ,_\6/18
Adopt MAC address of newly
Begin MAC retention timer elected master node as virtual
chassis MAC address
614
~/

Generate warning upon expiration
of MAC retention timer

Fig. 18

US 9,148,389 B2

Sheet 15 of 16

Sep. 29, 2015

U.S. Patent

q0} | ©PON YIomisN
|| vezLwslao
- T uonoalIpay
P g zz/ uonound Bngaq
g 02/ 8Inpopy uopesiddy
914
a|npoly 1duag bngag
1/ 8INPoN B0 | OPON IOMIBN
i 3 Sz — — ™ uweBoigbngeg [T ~
14 Indino N
A 0Z¥ 3INpojy
wmmm N Josinadng
s|npoyy abeiojg - 5 \ e
puewwoy) Bngaq pue \
(peaiy]) O $S8001d v 4
| Qb2
v pUBLILWOY)
Juswabeuely
Bngeq
90% 8Inpo Jabeuely jusws|q
804 8INpPojy 90/ eInpay
Juswabeuey aj0Way 10311p3Y
I~
004 Z0. 8lnpopy BuiBBngaq ajoway

US 9,148,389 B2

Sheet 16 of 16

Sep. 29, 2015

U.S. Patent

ze B

uoIINdaXa

PUBLWILIOD JO S[Npowl
~ Jlosialedns sisseyd

8.1 Auswsbeuew wioju|

UONNOSXa PUBLLILLIOD
~ 1o} puewwod ssadolid
9LL

aoepiayul Jasnh [ediydelb
ybnoly} puewiwiod

~| 1wswsbeuew salB9Yy
Vil

soepUl
Josn [esiydesb ul
spuewiwod juswabeuew

7~
an JO 18S 3pInoid

044

(R ALIF

uoljeunsap pajoo|es
ul 9|1} paJols aASLIal

29/ 0} PUBLILLIOD 8)N0eX]

Alojalipyjuoljeunsap

~ pajosjes Ul 9|14 8l0lg
99,

puewwo?)
Bngaq anoaxg

v9.

aoeLaUI
3Jomjau/apou yiomau
19B.1e} yum uoisses

7~
729) 2jowal e ysligels3

I~
084

oz Bi4

7~
8G/

Joyduossp o
indino plepuels alojsay

95,

1472

Alopoalipyuoneunssp
pajos|as 0} JojdLosap o)
indino plepue;s 108lipay

Joyduosap 9|1}
indino plepuejs ai0ig

472

uonouny Bngap Jjo indino
10 UoljeulISap 198|188

05L

US 9,148,389 B2

1
SYSTEM AND METHOD FOR A VIRTUAL
CHASSIS SYSTEM

CROSS-REFERENCE TO RELATED PATENTS

The present U.S. Utility Patent Application claims priority
as a continuation in part pursuant to 35 U.S.C. §120 to U.S.
patent application Ser. No. 13/010,168, entitled, “SYSTEM
AND METHOD FOR MULTI-CHASSIS LINK AGGRE-
GATION,” filed Jan. 20, 2011, now issued as U.S. Pat. No.
8,767,735, 0n Jul. 1, 2014, which is incorporated by reference
herein and made part of the present U.S. Utility Patent Appli-
cation for all purposes and which claims priority pursuant to
35 U.S.C. §119(e) to U.S. Provisional Application Ser. No.
61/370,622, entitled, “MULTICHASSIS VIRTUAL-FAB-
RIC LINK AGGREGATION SYSTEM,” filed Aug. 4, 2010,
which is incorporated by reference herein and made part of
the present U.S. Utility Patent Application for all purposes.

The present U.S. Utility Patent Application claims priority
pursuantto 35 U.S.C. §119(e) to U.S. Provisional Application
Ser. No. 61/658,159, entitled, “VIRTUAL CHASSIS WITH
GENERIC NODE ARCHITECTURE AND TOPOLOGY,”
filed Jun. 11, 2012, which is incorporated by reference herein
and made part of the present U.S. Utility Patent Application
for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable.

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT DISC

Not applicable.
BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to data networks and in
particular to systems and methods for providing topological
redundancy and resiliency between nodes of one or more data
networks.

2. Description of Related Art

Data networks include various computing devices, for
example, personal computers, IP telephony devices or servers
that communicate with each other and/or with various other
network elements or remote servers attached to the network.
For example, data networks may comprise, without limita-
tion, Metro Ethernet or Enterprise Ethernet networks that
support multiple applications including, for example, voice-
over-1P (VoIP), data and video applications. Such networks
regularly include interconnected nodes, commonly known as
switches or routers, for routing traffic through the network.

One of the key challenges faced by data networks is the
need for network resiliency, i.e., the ability to maintain high
availability despite eventual component failures, link failures
or the like, which is critical to providing satisfactory network
performance. Network resiliency may be achieved in part
through topological redundancy, i.e., by providing redundant
nodes (and redundant components within nodes) and multiple
physical paths between nodes to prevent single points of
failure, and in part through [.2/1.3 protocols to exploit the
redundancy upon occurrences of failures to converge upon
alternate paths for switching/routing traffic flows through the
network. As will be appreciated, detection and convergence
times must occur quickly (advantageously, in less than one

10

15

20

25

30

35

40

45

50

55

60

65

2

second) in networks to achieve seamless transition to the
alternate paths. Various types of network topologies are
implemented within a network to provide redundancy
between network elements, such as a ring networks, partial
mesh networks, full mesh networks, hub networks, etc. Con-
vergence times and redundancy between network elements
often varies depending on the type of network typology
implemented in a network.

Architectures of network elements also vary and affect
network resiliency. For example, various node architectures
include single switching elements, stackable switching ele-
ments, multi-slot chassis based network elements, etc. In
general, depending on cost and network needs, one of these
types of node architectures is selected and implemented into
one of the types of network topologies. However, once imple-
mented, it is sometimes difficult to upgrade or transition from
one type of network topology to another type of network
topology. Itis also difficult to transition from one type of node
architecture to another type of node architecture within a
network topology or to incorporate various types of node
architectures within one network.

Accordingly, there is a need for systems and methods for
providing resiliency between nodes having one or more dif-
ferent types of node architectures in one or more different
types of network topologies.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIGS. 1a-c illustrate schematic block diagrams of embodi-
ments of a virtual chassis system in accordance with the
present invention;

FIG. 2 illustrates a logical flow diagram of an embodiment
of a network topology discovery process in a virtual chassis
system in accordance with the present invention;

FIG. 3 illustrates a schematic block diagram of an embodi-
ment of topology database in a network node in a virtual
chassis system in accordance with the present invention;

FIG. 4 illustrates a schematic block diagram of an embodi-
ment of network nodes in a virtual chassis system in accor-
dance with the present invention;

FIG. 5 illustrates a schematic block diagram of an embodi-
ments of a network interface module of a network node in a
virtual chassis system in accordance with the present inven-
tion;

FIG. 6 illustrates a schematic block diagram of an embodi-
ment of a pre-pended header of a packet in the virtual chassis
system in accordance with the present invention;

FIG. 7 illustrates a schematic block diagram of an embodi-
ment of packet flow through a network node in a virtual
chassis system in accordance with the present invention;

FIG. 8 illustrates a schematic block diagram of an embodi-
ment of a virtual chassis manager application in accordance
with the present invention;

FIG. 9 illustrates a schematic block diagram of an embodi-
ment of a configuration manager module in accordance with
the present invention;

FIG. 10 illustrates a logical flow diagram of an embodi-
ment of a method for determining an operation mode of a
network node in a virtual chassis system in accordance with
the present invention.

FIG. 11 illustrates a logic flow diagram of an embodiment
of' a method for configuring a network node at start-up in
virtual chassis mode in accordance with the present inven-
tion;

US 9,148,389 B2

3

FIG. 12 illustrates a schematic block diagram of an
embodiment of configuration conversion from standalone to
virtual-chassis mode in accordance with the present inven-
tion;

FIG. 13 illustrates a schematic block diagram of an
embodiment of configuration conversion from virtual-chassis
mode to standalone mode in accordance with the present
invention;

FIG. 14 illustrates a schematic block diagram of an
embodiment of master address retention in a virtual chassis
system in accordance with the present invention;

FIG. 15 illustrates a schematic block diagram of an
embodiment of master address release in a virtual chassis
system in accordance with the present invention;

FIG. 16 illustrates a schematic block diagram of an
embodiment of master network node failure in a virtual chas-
sis system in accordance with the present invention;

FIG. 17 illustrates a schematic block diagram of an
embodiment of VFL failure in a virtual chassis system in
accordance with the present invention;

FIG. 18 illustrates a logic flow diagram of an embodiment
of'a method for recovery from a failure of a master network
node in a virtual chassis system in accordance with the
present invention;

FIG. 19 illustrates a schematic block diagram of an
embodiment for a remote debugging system in accordance
with the present invention;

FIG. 20 illustrates a logic flow diagram of an embodiment
of' a method for redirection of an output of a remote debug
module in accordance with the present invention;

FIG. 21 illustrates a logic flow diagram of an embodiment
of'a method for remote access of a network node in the virtual
chassis system in accordance with the present invention; and

FIG. 22 illustrates a logic flow diagram of an embodiment
of a method for a management interface module in accor-
dance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The following standards are referred to in this application
and are incorporated by reference herein: 1) the Link Aggre-
gation Control Protocol (LACP) which was formerly clause
43 of the IEEE 802.3 standard added in March 2000 by the
IEEE 802.3ad task force and is currently as incorporated in
TEEE 802.1AX-2008 on Nov. 3, 2008; and 2) IEEE Std.
802.1Q), Virtual Bridged Local Area Networks, 2003 edition.

FIG. 1aq illustrates an embodiment of a virtual chassis
system 100 including a plurality of network nodes 110 oper-
ably coupled by dedicated link aggregate groups for commu-
nicating control and addressing information called virtual
fabric links (VFLs) 120. VFLs 120 and their operation are
described in more detail in U.S. patent application Ser. No.
13/010,168, entitled, “SYSTEM AND METHOD FOR
MULTI-CHASSIS LINK AGGREGATION;,” filed Jan. 20,
2011, pending, which is incorporated by reference herein and
made part of the present U.S. Utility patent application for all
purposes. The VFLs 120 provide connections between the
network nodes 110 for exchange of information related to
traffic forwarding, MAC addressing, multicast flows, address
resolution protocol (ARP) tables, Layer 2 control protocols
(e.g. spanning tree, Ethernet ring protection, logical link
detection protocol), routing protocols (e.g. RIP, OSPF, BGP)
and the status of the network nodes and external links.

In an embodiment, the plurality of network nodes 110
operate as a single virtual network node with unified manage-
ment capabilities. A master network node, e.g. network node
110aq, is selected and the local MAC address of the master

10

15

20

25

30

35

40

45

50

55

60

65

4

network node 110 is adopted as the master MAC address for
the virtual chassis system 100 by the other network nodes
110. The master MAC address is utilized by external nodes
112 to address the network nodes 110 in the virtual chassis
system 100. As such, the network nodes 110 operate trans-
parently to the external nodes 112 and are treated as a single
logical device by the external nodes 112.

External nodes 112 are operable to couple to one or more
network nodes 110 in the virtual chassis system 100 using a
single trunk or link, a link aggregate group (LAG) 116 or
virtual-chassis link aggregate groups (VC-LAG) 114. To pro-
vide increased resiliency and remove a single point or even
two points of failure, VC-LAG 114 is operable to couple an
external node to two or more network nodes 110 in the virtual
chassis system 100. The external node can use load balancing
techniques to distribute traffic across the available links of
VC-LAG 114. For example, one of the physical links of the
VC-LAG 114 is selected by the external node to transmit a
packet based on a load-balancing algorithm (usually involv-
ing a hash function operating on the source and destination
Internet Protocol (IP) or Media Access Control (MAC)
address information) for a more effective use of bandwidth.

During normal operation, the network nodes 110 within the
virtual-chassis system share the master MAC address for
system identification by a wide variety of layer 2 and layer 3
protocols. For example, the spanning tree protocol and LACP
protocols use the master MAC address as the identifier for the
virtual chassis system 110. Internet Protocol (IP) routing also
utilizes the master MAC address to identify the virtual chassis
system 100 to external network elements in the network, e.g.
peers use the master MAC address as the Ethernet destination
address for packets destined to the virtual chassis system 100.
As such, the network nodes 110 within the virtual chassis
system 100 are viewed as a single logical node by external
network nodes 112. In addition, the network nodes 110 within
a virtual chassis system 100 are managed as a single node
with a unified administration, operations and maintenance
management system.

Since the network nodes 110 within a virtual chassis sys-
tem 100 are treated as a single logical device by external
nodes 112, the external nodes 112 are operable to actively
forward traffic on all the links of the VC-LAG 114. This
feature enables multiple homing of the external nodes 112 to
the network nodes 110 without requiring spanning tree pro-
tocols between the external nodes and network nodes while
still facilitating a carrier-grade detection and convergence
time to edge uplink failures as well as network node 110
failures. Another advantage of the active forwarding mode of
all the VC-LAG 114 uplinks to the virtual chassis system 100
is increased efficiency of the use of bandwidth of the VC-
LAG 114 links.

Within the virtual chassis system 100, a network node 110
is assigned a globally unique identifier called a chassis iden-
tifier or chassis ID. The network node 110 assigns an internal
VFL identifier (VFID) to each of its configured VFLs 120
within the virtual chassis system 100. Since the VFID for a
VFL is utilized for internal identification and configuration of
VFLs 120, a network node 110 may assign the same or a
different VFID to a VFL 120 as assigned by another network
node 110. The VFLs 120 provide a connection for exchange
of information between the network nodes 110 regarding
traffic forwarding, MAC addressing, multicast flows, address
resolution protocol (ARP) tables, Layer 2 control protocols
(e.g. spanning tree, Ethernet ring protection, logical link
detection protocol), routing protocols (e.g. RIP, OSPF, BGP),
as described in more detail in U.S. patent application Ser. No.
13/010,168, entitled, “SYSTEM AND METHOD FOR

US 9,148,389 B2

5

MULTI-CHASSIS LINK AGGREGATION,” filed Jan. 20,
2011. In an embodiment, synchronization of layer 2 address
tables, such as medium access control (MAC) address tables,
between the network nodes 110 is driven by layer 2 packet
flows over the VFLs 120 as well as by a periodic keep-alive
mechanism whereby the network node 110 that owns a given
MAC address floods specific packets bearing such MAC
address as the source address. The synchronization mecha-
nism also needs to implement the standard MAC flushing
mechanism to handle cases where a network node 110 or
some of its components go down. MAC address source learn-
ing is enabled over the VFLs 120 through flooding of
unknown destination MAC addresses. During source learn-
ing, the network nodes 110 exchange packets with pre-
pended headers over the VFLs 120 that include source MAC
addresses and associated hardware device information, such
as source chassis 1D, source network interface identifier and
source port identifier information. The network nodes 110 use
this information to maintain synchronized MAC address
tables with minimum messaging based MAC table synchro-
nization. Utilizing the synchronized MAC address table, the
network nodes 110 are operable to process and forward pack-
ets between the network nodes 110 in the virtual chassis
system 100.

FIG. 1a illustrates that the network nodes 110 are coupled
in a partial mesh network topology. However, the network
nodes 110 in a virtual chassis system 100 may be coupled in
any of a plurality of types of network topologies without
affecting operation of the virtual chassis system 100. FIG. 15
illustrates a virtual chassis system 100 with a plurality of
network nodes 110 configured in a ring network topology
coupled by VFLs 120. FIG. 1c illustrates a virtual chassis
system 100 with a plurality of network nodes 110 configured
in a hub and spoke or star type network topology. Other

25

6

network nodes 110 in the virtual chassis system 100 at start-
up, reboot, on indication of a status change in the network or
at predetermined time periods. In step 132, a network node
110 detects that it is operating in a virtual chassis mode. For
example, one or more parameters of the network node 110 are
configured to indicate a virtual chassis mode of operation.
The network node 110 detects that the parameters indicate
virtual chassis mode operation (e.g., rather than stand-alone
mode or multi-chassis mode). The network node 110 then
performs in step 134 one or more control protocols to dis-
cover other network nodes 110 in the virtual chassis system
100 and to exchange topology and configuration information.
The network node 110 uses the information to build a topol-
ogy database of the virtual chassis system 100. The topology
database includes: identification information for the other
network nodes 110 (e.g., local MAC address, chassis identi-
fier), identification information for network interfaces that
host active VFLs 120 (or other active inter-switch links),
identification information for the VFLs 120 and their associ-
ated member ports on the network nodes 110. The network
node 110 thus learns the active connections between the net-
work nodes 110 and configuration information of the other
network nodes 110 in the virtual chassis system 100. The
following Table 1 is an example of a topology database for a
network node 110a, in this example with e.g. chassis ID=1,
following the discovery phase. Table 1 includes exemplary
information stored in the topology database but other infor-
mation and data not illustrated may also be included in the
topology database. In addition, the topology database may be
stored in separate databases or tables or combined with other
tables or databases in the network node 110.

TABLE 1

Topology Database - Chassis 1

Local Chassis Data Neighbor [1] Neighbor [2] Neighbor [3]

Chassis ID =1 Chassis ID = 2 Chassis ID =4 Chassis ID =3
Uptime =4 min 50 sec Uptime = 5 min 10 sec Uptime = 5 min 5 sec Uptime = 5 min 1 sec
Priority = 100 Priority = 100 Priority = 100 Priority = 100

Chassis MAC = A
Chassis Group =0
Primary CMM = CMM-A
Chassis type = OS10K
Role = unassigned

State = unassigned

Chassis MAC =B
Chassis Group =0
Primary CMM = CMM-A
Chassis type = OS10K
Role = unassigned

State = unassigned

Chassis MAC =D
Chassis Group = 0
Primary CMM = CMM-B
Chassis type = OS10K
Role = unassigned

State = unassigned

Chassis MAC = C
Chassis Group =0
Primary CMM = CMM-A
Chassis type = OS10K
Role = unassigned

State = unassigned

network topologies not depicted, such as linear, tree, full
mesh, hybrid, etc., are also be supported by the virtual chassis
system 100. To support the plurality of different types of
network topologies, the network nodes 110 in a virtual chas-
sis system 100 are operable to perform a network topology
discovery process.

FIG. 2 illustrates a logical flow diagram of an embodiment
of a network topology discovery process 130 in a virtual
chassis system 100. The process is performed by the active

50

55

In step 136 of FIG. 2, a master network node is selected to
perform management and other tasks for the virtual chassis
system 100. The local MAC address of the master network
node is then adopted by the other network nodes 110. The
following Table 2 is an example of atopology database for the
elected master network node 110 with chassis ID=1. As seen
in Table 2, network node with chassis ID=1 is indicated as
having the master role and the other nodes are indicated as
having a slave role in the topology database.

TABLE 2

Topology Database - Chassis 1

Local Chassis Data

Neighbor [1]

Neighbor [2] Neighbor [3]

Chassis ID =1
Uptime = 5 min 50 sec

Chassis ID = 2
Uptime = 6 min 10 sec

Chassis ID =4
Uptime = 6 min 5 sec

Chassis ID =3
Uptime = 6 min 1 sec

US 9,148,389 B2

7 8
TABLE 2-continued
Topology Database - Chassis 1
Local Chassis Data Neighbor [1] Neighbor [2] Neighbor [3]
Priority = 100 Priority = 100 Priority = 100 Priority = 100

Chassis MAC = A
Chassis Group =0
Primary CMM = CMM-A
Chassis type = OS10K
Role = master

State = running

Chassis MAC =B
Chassis Group =0
Primary CMM = CMM-A
Chassis type = OS10K
Role = slave

State = running

Chassis MAC =D
Chassis Group = 0

Role =slave
State = running

Primary CMM = CMM-B
Chassis type = OS10K

Chassis MAC = C
Chassis Group =0
Primary CMM = CMM-A
Chassis type = OS10K
Role = slave

State = running

The selection of a master network node 110 is based on a
prioritized list of parameters including chassis priority, up
time, chassis ID and chassis MAC address. The parameter of
up time gives priority to network nodes 110 in operation for
longer periods of time. The parameter of chassis priority is a
user configured priority that defines the user preference of a
master network node 110 regardless of chassis ID or up time.
The use of various parameters adds flexibility to the selection
of a master network node 110. The chassis group parameter
shown in the topology database identifies the virtual chassis
system 100. One or more additional virtual chassis systems
100 with different chassis group identifications may also be
operable in a network. The topology database also identifies
the active or primary control manager modules (CMM) in a
network node 110 and the chassis type of the network node
110.

In step 138 of the network topology discovery process 130,
the network node 110 performs one or more protocols to
monitor the state or status of the connections and the network
nodes 110 in the virtual chassis system 100. The current state
of the network nodes 110 is maintained in the topology data-
base. A detected status change in a network node 110 in the
virtual chassis system 100 may initiate a change in routing, a
change in the master node, etc. Through topology self-dis-
covery and monitoring of the network nodes 110, the virtual
chassis system 100 is operable to support a plurality of dif-
ferent types of network topologies with minimum pre-con-
figuration and intervention.

FIG. 3 illustrates an example of topology databases 144 in
network nodes 110 in a virtual chassis system 100 after selec-
tion of a master network node 110. In this example, network
node 110a is adopted as the master network node and network
nodes 1105 and 110c¢ are slave nodes. The local MAC address
of network node 110a (e.g., master MAC address=A) is
adopted by the network nodes 110a-c as the virtual chassis
MAC address. In addition, the master MAC address
(MAC=A) is adopted as the application MAC address for
management applications.

The virtual chassis system 100 is also operable to include
network nodes 110 with one or more different types of node
architectures, such as single module, stackable, or multi-slot
chassis-based architectures. FIG. 4 illustrates a schematic
block diagram of an embodiment of network nodes 110 in a
virtual chassis system 100 with different types of node archi-
tectures. In this example, network node 110qa has a multi-slot
chassis-based architecture with a plurality of network inter-
face modules 152a-r. In general, multi-slot chassis-based
architectures share one enclosure, control manager modules
(CMMs) 150a-b and a common power supply with one or
more network interface modules (NIMs) 1524a-#, such as line
cards or port modules. The network interface modules 152
include a queuing module 212 and switching module 210 and
are connected by a fabric switch 214 integrated into the back-
plane of the chassis.

20

25

40

45

55

Network node 1105 in this example has a stackable node
architecture and includes a plurality of network elements
140a-n coupled by backplane connections 142. Each network
element 140a-r is operable as a stand-alone node and
includes its own enclosure, control manager module (CMM)
150, switching module 210, queuing module 212 and power
supply. In some stack architectures, one network element
(Network Element 140 in this example) is designated as the
main or master unit of the stack for management purposes.

Network node 110¢ has a single module node architecture,
such as a single stackable element 140 or alternatively, a
multi-slot chassis-based architecture with a single network
interface module 152.

Network nodes 110a-c correspond to one or more of the
network elements 110 in virtual chassis system 100 in FIGS.
la-c. For example, virtual chassis system 100 is operable to
include network nodes 110 with only multi-slot chassis-based
node architectures or include network nodes 110 with only
stackable node architectures or include a combination of net-
work nodes 110 with two or more types of node architectures,
such as multi-slot chassis-based architectures, stackable node
architectures and single module node architectures. Though
not shown, the virtual chassis system 100 may also include
network nodes 110 comprised of other types of node archi-
tectures and configurations.

Network node 110a and network node 1105 are operably
coupled by VFL 120a. The network nodes 110a and 1105
designate VFL 1204 with an internal VFL identifier (VFID),
such as VFID=3 for network node 110a and VFID=0 by
network node 1105 as shown in FIG. 3. Network node 110a
and network node 110c¢ are operably coupled by VFL 12054.
The network nodes 110a and 110¢ designate VFL 12056 with
an internal VFL identifier (VFID), such as VFID=2 for net-
work node 110a and VFID=1 by network node 110¢ as shown
in FIG. 3. In addition, the network nodes 110a-c are also
operable to be coupled by additional VFL 120s to one or more
other network nodes 110 as shown in FIGS. 1a-c. The VFL
1204 between network nodes 110a and 1105 is described
below as a generalization of the operation and configuration
of'the VFLs 120 between the various network nodes 110 in a
virtual chassis system 100.

VFL 1204 between network node 1104 and network node
11054 is operably coupled to one or more VFL, member ports
in one or more switching modules 210. For redundancy in
case of failure of one or more ports, links or modules, VFL
120a is operable to include a plurality of aggregate links
generated using the LACP or similar aggregate protocol
between different switching modules 210 of the network
nodes 110a and 11056. For example, in FIG. 4, VFL 120a
includes a first subset A of physical links between NIM 1524
ofnetwork node 110a and stackable network element 140a of
network node 11056 and a second subset B of physical links
between NIM 1526 of network node 110a and stackable
network element 1405 of network node 1105.

US 9,148,389 B2

9

The network nodes 110 are assigned a unique chassis iden-
tifier in the virtual chassis system 100. The chassis ID for each
network node 110 is unique and global and through the topol-
ogy discovery, the network nodes 110 are aware of the chassis
1D ofits peer network nodes 110 in the virtual chassis system
100. In addition, unique hardware device identifiers or mod-
ule identifiers (MIDs) for various components, such as the
switching modules 210 and port interfaces in the network
nodes 110, are generated allowing for management of local
and remote objects. In an embodiment, the hardware device
identifiers MIDs for the switching modules 210 have global
significance within the virtual chassis system while MIDs for
other components, such as queuing modules 212, may have
only local significance. For example, the hardware device
identifiers’ assigned to the switching modules 210 are known
by other network nodes 110 while hardware device identifiers
for other devices are restricted to a local network node 110
and have no significance to other network nodes 110. For
example, the port interfaces of a switching module 210 are
assigned a global unique hardware device identifier that
includes the chassis 1D, switching module ID and port inter-
face ID. In an embodiment, the network nodes 110 in the
virtual chassis system operate in a pre-pended header mode to
exchange data and control packets over the VFLs 120.

FIG. 5 illustrates a schematic block diagram of an embodi-
ment of a network interface module (NIM) 152 operating in a
prepended header mode in more detail. Though a network
interface module 152 is illustrated, a stackable network ele-
ment 140 or single module network element is operable to
perform similar functions for operating in a prepended header
mode. Switching module 210 includes a plurality of external
ports 240 that are connected to external nodes 112 from the
virtual chassis system 100. One or more of the external ports
240 may include member ports foraVC-LAG 114, LAG 116,
single trunk or other trunk group, fixed link, etc. The external
ports 240 may have the same physical interface type, such as
copper ports (CAT-5E/CAT-6), multi-mode fiber ports (SX)
or single-mode fiber ports (LX). In another embodiment, the
external ports 240 may have one or more different physical
interface types.

The external ports 240 are assigned external port interface
identifiers (Port ID), e.g., device port values, such as gport
and dport values, associated with the switching module 210.
In an embodiment, the chassis ID of the network node 110,
the MID of the switching module 210 and the external port
interface identifier (Port ID) are used as a global unique
identifier of a physical external port interface 240 in a net-
work node 110 in the virtual chassis system 100. In another
embodiment, globally unique module identifiers (MID) are
assigned to the switching modules 210 of the network nodes
in the virtual chassis system based on the chassis identifiers.
For example, switching MIDs 0-31 are assigned to chassis
1D=1, switching MIDs 32-63 are assigned to chassis ID=2,
etc. In this case, the globally unique switching MIDs and
external port identifiers (Port ID) are used as a global unique
identifier of a physical external port interface 240 in a net-
work node 110 in the virtual chassis system 100.

When a packet is received on an external port 240, switch-
ing module 210 transfers the packet to a pre-pended packet
header interface (PPHI) 246 that adds a pre-pended header (or
otherwise modifies the packet header) to include hardware
device information (HDI) associated with the source and/or
destination MAC address of the packet. In an embodiment,
the pre-pended header may include other information such as
packet priority and load balance identifiers. To obtain HDI
information associated with the MAC address of the packet,
the PPHI performs a look-up process in MAC/HDI forward-

10

20

25

30

35

40

45

50

55

60

65

10

ing table 250. The MAC/HDI forwarding table 250 stored in
the address table memory 248 includes a list of MAC
addresses and associated hardware device information. The
hardware device information uniquely identifies a network
node 110, switching module 210 and/or a port interface 240
for routing the packet. The hardware device information
includes, for example, chassis ID, MID of a switching module
210 and/or port interface ID of a port 240 associated with the
destination MAC address. The MAC/HDI forwarding table
250 may include one or more tables, such as source trunk
mayp, trunk bitmap table, trunk group tables, VLAN mapping
table, etc. In an embodiment, the MAC/HDI forwarding table
250 or parts thereof may be located in the queuing module of
the NIM 152 or other module as well.

Based on the topology database 144, a VFL routing con-
figuration table 254 is generated at a network node 110 to
determine routing of unicast traffic. The VFL routing con-
figuration table 254 includes a chassis 1D and an associated
VFL ID (VFID). The VFID associated with the chassis 1D
identifies a VFL 120 in the virtual chassis system 100 for
routing the packet to a network node 110 identified by the
destination chassis ID. In another embodiment, when glo-
bally unique module identifiers (MID) are assigned to the
switching modules 210 of the network nodes 110 in the vir-
tual chassis system 100, the VFL routing configuration table
254 includes the globally unique MIDs and an associated
VFLID (VFID). In an embodiment, the VFL routing configu-
ration table 254 is generated using a shortest path algorithm,
traffic based algorithm or other type of routing algorithm. An
example of VFL routing configuration tables 254 for the
virtual chassis system 100 shown in FIG. 1a is illustrated
below in Table 3.

TABLE 3
Destination Outgoing Destination Outgoing
Chassis ID/MID VFL ID Chassis ID/MID VFL ID
VFL Routing VFL Routing
Configuration on Chassis 1 Configuration on Chassis 2
1 (MID=0-31) N/A (local) 1 (MID =0-31) 0
2 (MID =32-63) 3 2 (MID = 32-63) N/A (local)
3 (MID = 64) 2 3 (MID = 64) 3
4 MID=6597) 2orl 4 (MID = 65-97) 3orl
5 (MID = 98) 1 5 (MID =98) 1
6 (MID = 99-115) 0 6 (MID =99-115) Oorl
VFL Routing VFL Routing

Configuration on Chassis 3 Configuration on Chassis 4

1 (MID = 0-31) 1 1 (MID =0-31) Oorl

2 (MID =32-63) 0 2 (MID = 32-63) Oorl

3 (MID = 64) N/A (local) 3 (MID = 64) 1

4 MID =65-97) 3 4 (MID = 65-97) N/A (local)

5 (MID = 98) 3or2 5 (MID =98) 0

6 (MID = 99-115) 2 6 (MID =99-115) Oorl

VFL Routing VFL Routing

Configuration on Chassis 5 Configuration on Chassis 6

1MID=0-31) 2 1 (MID =0-31) 0

2(MID=32-63) 1 2 (MID = 32-63) Oorl

3 (MID = 64) lor0 3 (MID = 64) 1

4 MID =65-97) 0 4 (MID = 65-97) lor2

5 (MID = 98) N/A (local) 5 (MID =98) 2

6 (MID = 99-115) 1 6 (MID = 99-115) N/A (local)

Though the MAC/HDI forwarding table 250 and VFL rout-
ing table 254 are illustrated as separate tables in address table
memory 248, the tables may be combined or data included
from one of the tables into the other table or the tables may be
separated into one or more other tables.

US 9,148,389 B2

11

In an embodiment, the hardware device information HDI
in the pre-pended header of a packet includes the outgoing
VFID for the VFL port 252 associated with the destination
chassis 1D, as shown in Table 3. The pre-pended header also
includes hardware device information HDI associated with
the source port receiving the packet, such as the port interface
1D, MID of the switching module 210 and chassis ID. Addi-
tional information, such as VL AN ID, packet type (multicast,
unicast, broadcast), packet priority and load balance identifier
is also added to the pre-pended header in an embodiment.

The packet with the pre-pended header is then transmitted
to the queuing module 212 for routing over the fabric switch
214. Based on the VFL routing configuration table 254, the
queuing module 212 routes the packet with the pre-pended
header to the switching module 210 connected to the outgo-
ing VFL 120.

The queuing module 212 includes a packet buffer 260, a
queue management 262 for providing traffic and buffer man-
agement and a global HDI address table 264. The global HDI
address table 264 maps the outgoing VFL ID to the appropri-
ate queues in queuing modules 212 in one or more of the other
NIMs 152. For example, the queuing module 212 switches
the packet to an appropriate egress queue for one or more of
the VFL port interfaces 252 for transmission over the outgo-
ing VFL 120. In an embodiment, a determination of the egress
queue corresponding to a particular VFL port interface is
operably based on a load balance identifier in the pre-pended
header.

Though the switching module 210 and queuing module
212 are illustrated as separate integrated circuits or modules,
one or more functions or components of the modules may be
included on the other module or combined into an alternate
module or otherwise be implemented in one or more inte-
grated circuits.

FIG. 6 illustrates a schematic block diagram of an embodi-
ment of a pre-pended header of a packet in the virtual chassis
system 100. The pre-pended header 300 includes fields for
source HDI 302, destination HDI 304, VLLAN ID 306, packet
type 308, source MAC address 310 and destination MAC
address 312. In an embodiment, the pre-pended header may
also include, load balance identifier 314 and packet priority
316. The destination HDI 304 includes, for example, the port
identifier (either device port (dport) and/or global port value
(GPV)), MID of switching module 210 and chassis ID of the
destination network node 110 associated with the destination
MAC address. The source HDI 302 includes, for example, the
port identifier (either device port (dport) and/or global port
value (GPV)), MID of switching module 210 and/or chassis
ID of the source network node associated with the source
MAC address. The load balance identifier 314 is utilized by
the queuing module 212 to determine a VFL member port for
transmission of the packet over the outgoing VFL 120. The
packet priority 316 is utilized by the queuing module 212 to
determine the specific priority queue.

FIG. 7 illustrates a schematic block diagram of an embodi-
ment of a packet flow through a network node 110a to another
network node 1105 in a virtual chassis system 100. In this
example, an external device 300 from the virtual chassis
system 100 with source MAC address “MAC1” transmits a
packet with a destination MAC address “MAC2”. Network
node 1104, with Chassis ID=1 in this example, receives the
packet at external port interface 240, e.g. with port ID=2 on
switching module 210z, e.g. with MID=31. The switching
module 2107 extracts the destination MAC address MAC2
and performs an address table look-up in MAC/HDI forward-
ing table 250 to determine hardware device information
(HDI) associated with the destination MAC address MAC2.

25

40

45

12

The destination HDI may include, e.g., destination chassis ID
and device module identifier (MIDs) and port identifiers asso-
ciated with the destination MAC address. The destination
HDI may also include identifiers of one or more other net-
work nodes or hardware modules in a path to the destination
device associated with the destination MAC address. When
the destination MAC address is associated with another net-
work node, e.g. destination chassis ID is not the local chassis
1D, the switching module 210 determines an outgoing VFL
1D associated with the destination chassis ID. The outgoing
VFL ID may be added to the destination HDI in the pre-
pended header. For the example in FIG. 5, the VFL routing
table 254 indicates that the destination chassis ID=2 is asso-
ciated with VFL 120 having VFID=3.

The switching module 2107 also includes in the prepended
header source hardware device information (HDI) associated
with the originating external port interface, e.g. port ID=2.
The source HDI may include one or more hardware device
identifiers, such as MID of the originating switching module
210, source port identifier, MID for source NIM 152, source
chassis 1D, etc. Furthermore, in an embodiment, the pre-
pended header includes a packet priority and a load balance
identifier determined based on parameters retrieved from the
original packet (source MAC address, destination MAC
address, source IP address, destination IP address).

The packet with pre-pended header is transmitted to the
queuing module 2127 which then determines a NIM 152 on
the network node 110 to transmit the packet based on the
destination HDI. When the destination HDI indicates a local
external port interface on the network node (e.g. based on the
destination MID contained in the pre-pended header), the
queuing module places the packet in an egress queue for
transmission to the corresponding NIM 152 of the local exter-
nal port interface. In another example illustrated in FIG. 5,
when the destination HDI indicates that the packet needs to be
transmitted over a VFL 120 to another network node 110 in
the virtual chassis system 100, the queuing module deter-
mines from the VFL ID the outgoing NIM 152 to transmit the
packet. In this example, the queuing module determines that
VFID=3 is operably coupled to NIM 152¢ and transmits the
packet with pre-pended header over the fabric switch 214 to
NIM 152a. When multiple switching modules 210 are oper-
ably coupled to the outgoing VFL 120, the traffic to be trans-
mitted may be distributed between the multiple switching
modules 210 in a load balancing method. In addition, the
selection of a VFL. member port (high priority queue, low
priority, etc.) on a switching module 210 is operably based on
load balance identifier parameters carried on the pre-pended
header. The queuing module 2124 on NIM 1524 receives the
packet with pre-pended header and queues the packet for
transmission over VFL 120 with VFID=3. The switching
module 210a then transmits the packet with pre-pended
header including the source and/or destination HDI to the
network node 11054, chassis ID=2 over the VFL 120 with
VFID=3.

In an embodiment, the switching module 210a may alter
the pre-pended header prior to transmission over the VFL
120. For example, the switching module 210a may translate a
destination HDI with local significance (e.g., a gport value or
local hardware device identifier MID) to an HDI with global
significance or remove the outgoing VFID from the pre-
pended header.

In an embodiment, the MAC/HDI forwarding tables 250 in
the NIMs 152 are populated and updated in response to layer
2 packet flows through the virtual chassis system 100. Since
the pre-pended header includes source MAC address and
source HDI information, the NIMS 152, e.g. in specific the

US 9,148,389 B2

13

switching modules 210 in an embodiment, are able to popu-
late the MAC/HDI forwarding table 250 with this informa-
tion. By operating in a pre-pended header mode to exchange
Layer 2 packets with source MAC addresses and source HDI
over the VFL 120, the switching modules 210 are able to
synchronize the MAC/HDI forwarding tables 250 between
the network modules 110 in a virtual chassis system 100.
Though the MAC/HDI forwarding table 250 and VFL routing
table 254 are described as located in the switching modules
210, the tables may be included, alternatively or in addition
to, in the queuing modules 2127 or other module of the
network node 110. In another embodiment, the CMM 150
(primary and secondary) may also include the MAC/HDI
forwarding table 250 and VFL routing table 254.

FIG. 8 illustrates a schematic block diagram of an embodi-
ment of a virtual chassis manager application or module 400
operable in the network nodes 110 in the virtual chassis
system 100. In an embodiment of a network node 110 with a
multi-slot chassis based node architecture, the virtual chassis
manager module 400 includes a distribution of functionality
between the central management module (CMM) 150 of the
network node 110 (called VCM-CMM 402) and a processing
module 266 in a designated network interface module (NIM)
152 of the network node (called VCM-NIM 404). In a stack-
able node architecture, a designated or master stackable net-
work element 140 operates the VCM-NIM 404. Use of a
designated NIM 152 or stackable element 140 avoids central-
izing the functions of the VCM module 400 only at a CMM
150. An example of a distribution of functionality of the
virtual chassis manager module 400 is shown in Table 4.

TABLE 4

VCM-CMM 402 VCM-NIM 404

Element and network
management interface to
the virtual chassis
functionality

Coordination of the virtual
chassis operation and states
from a network node
overview

Control protocol state machines

Service interfaces with other software
components, i.e. interfaces used by the VCM
module 400 to provide or request services
to/from other software components.
Programming of the underlying

switching module devices: global module
identifiers (MID), loop prevention, virtual
chassis inter-process communication infra-
structure, VFL member port programming,
etc.

In an embodiment, the VCM-CMM 402 includes an inter-
face between the virtual chassis manager module 400 and
element and/or network manager module 406 as well as an
interface to other applications 408 registered with VCM mod-
ule 400 operable on the network node 110. The virtual chassis
manager module 400 informs the registered applications 408
when to operate in the virtual chassis mode. More generally,
the virtual chassis manager module 400 provides a wide range
of notifications to inform interested applications about the
status of the virtual chassis system both in the context of the
local node and other network nodes 110 in the virtual chassis
system 100. Some of the status information is driven by
management configuration, whereas other status information
is triggered by runtime decisions taken by the network node
individually or by a plurality of the network nodes 110 within
the virtual chassis system upon control data exchange, nego-
tiation and agreement. The virtual chassis manager module
400 also interfaces with the VLAN Manager Application
module 410, Spanning Tree Protocol (STP) application mod-
ule 412, Source Learning application module 414, Link
Aggregation application module 416 and Port Manager appli-
cation module 418 for the purposes of requesting services

10

15

20

25

30

35

40

45

50

55

60

14

from these system components. For example, the VCM 400
may request VLAN Manager to configure a VFL. member port
as a member of the control VL AN in order to allow the set-up
of an inter-process communication channel between the net-
work nodes 110 in the virtual chassis system 100.

The VCM-NIM 404 performs module identification con-
figuration (e.g. MID) of hardware modules. The VCM-NIM
404 also interfaces with the queue management 262 in queu-
ing modules 212 to perform hardware device/queue mapping
functions and inter-chassis loop avoidance functions. The
VCM-NIM 404 also includes virtual chassis state function-
ality for the control and management of the VFLs 120. Virtual
Fabric Link Control manages and configures the VFLs 120
and interfaces with the port manager application module 418
to monitor and/or control the state of the VFLs 120 and their
corresponding member ports. It also tracks and updates the
status of the VFLs 120. The VCM-NIM 404 tracks the state of
each VFL member port using the standard L ACP protocol, or
other similar protocol, along with the state of the link at the
physical level. In addition to the LACP protocol, a virtual
chassis status protocol performs periodic keep-alive checks
(hello protocol) in order to check the status and/or operability
of components running on the designated NIM on both vir-
tual-chassis switches. All virtual chassis protocol packets
must be assigned a high priority in the system to avoid false/
premature failure detection because such a premature detec-
tion of failure may have a very disruptive effect in the system.
By running the virtual chassis status protocol on a primary
designated NIM 152, the back-up designated NIM module is
able to assume control of the status protocol processing in the
event of failure.

The VCM-CMM 402 and the VCM-NIM 404 register with
port manager application module 418 to receive port state and
link state events about the member ports and links ofthe VFLs
120. In another embodiment, the virtual chassis manager
module 400 may include a port manager application module
to monitor the port and link state of the VFLs 120. The virtual
chassis manager module 400 tracks the operational state of
VFLs 120 and processes events about the VFL status, i.e.
aggregate created/deleted/up/down. The port manager appli-
cation module 418 provides link state notifications to both the
VCM-CMM 402 and VCM-NIM 404.

In an embodiment, a transport control protocol is imple-
mented in a virtual chassis system 100 to transport control
protocol packets between designated NIMs 152 or stackable
network elements 140 of network nodes 110. The transport
control protocol is operable in the network nodes 110 with
different node architectures. For a multi-slot chassis based
node architecture, a designated NIM 152 with a designated
processing module 266 operates the transport control proto-
col, e.g. as part of the VCM-NIM 404. In a stackable node
architecture, a designated or master stackable network ele-
ment 140 operates the transport control protocol.

Chassis supervisor module 420 provides an interface to
hardware of the network node 110 and controls monitoring
and boot-up or restart of the various application modules,
controls software reloads and software upgrades (such as
in-service software upgrades ISSUs), providing a command
line interface (CLI) for the element manager module 406 and
controls access to status or image files of system of the net-
work node 110. During virtual chassis mode, the chassis
supervisor module 420 controls boot sequence, controls soft-
ware reloads and ISSUs and provides an interface for access-
ing virtual chassis parameters.

Configuration manager module 422 is operable to convert
operation of the network node 110 from a virtual chassis
mode to a standalone mode or convert a network node 110

US 9,148,389 B2

15

from a standalone mode to a virtual chassis mode. Configu-
ration manager module is also operable to configure the vir-
tual chassis manager module 400 and multi-chassis manager
module 424. The operation of the configuration manager
module 422 and operation states of a network node 110 are
described in more detail below.

The network nodes 110 in a virtual chassis system 100 may
operate in a plurality of operation modes, including virtual
chassis mode, standalone mode and multi-chassis (MC-LAG)
mode. Various parameters and configurations are modified
depending on the operation mode. Table 5 illustrates the
assignment of chassis IDs to network nodes 110 depending on
the mode of operation.

TABLE 5
Operation Mode Minimum Chassis ID Maximum Chassis ID
Standalone 0 0
Multi-Chassis (MCLAG) 1 2
Virtual-Chassis 1 N

In standalone mode, a network node 110 is operated as a
single node and utilizes its configured local MAC address
rather than a global Virtual Chassis MAC address. In multi-
chassis mode, two network nodes are configured as virtual
nodes whose MAC forwarding tables and ARP tables are
synchronized, but they still operate as separate bridges and
routers, each of them using their own local chassis MAC
address, as described in more detail in U.S. patent application
Ser. No. 13/010,168, entitled, “SYSTEM AND METHOD
FOR MULTI-CHASSIS LINK AGGREGATION;,” filed Jan.
20, 2011. In virtual chassis mode as described herein, a plu-
rality N of network nodes are configured as virtual chassis
nodes in a virtual chassis system 100. A globally unique
chassis ID from 1 to N is assigned to each of the plurality of
network nodes in the virtual chassis system 100.

When a network node 110 operates in standalone mode,
port identifiers and configurations follow a format: 0/<slot>/
<port>, where the chassis ID equals “zero”, slot identifies
each Network Interface Module (NIM) 152 in a multi-slot
architecture or stackable network element 140 and port is the
port interface identifier. When a network node 110 operates in
multi-chassis mode, port configurations follow a format:
<chassis>/<slot>/<port>, where the chassis ID equals 1 or 2
and represents the operation/current/running chassis 1D.
When a network node 110 operates in virtual chassis mode,
port configurations follow a format: <chassis>/<slot>/
<port>, where the chassis ID is a number in the range 1,
2 ... N and represents the operation/current/running chassis
D.

FIG. 9 illustrates a schematic block diagram of configura-
tion manager module 422 in more detail. Configuration man-
ager module 422 includes various configuration modules to
support the different modes of operation of a network node
110. Boot configuration module 440 in an embodiment sup-
ports standalone and multi-chassis modes of operation. Vir-
tual Chassis (VC) Mode configuration module 450 supports
virtual chassis mode. The configuration manager module 422
reads and validates the relevant configuration files (boot con-
figuration module 440 or VC mode configuration module
450) at start up and runtime depending on the mode of opera-
tion of the network node.

The boot configuration module 440 includes a set of man-
agement commands that define resources and specify the
network node’s parameters and functions in standalone or
multi-chassis mode. The boot configuration module 440

10

15

20

25

30

35

40

45

50

55

60

65

16

includes the application configuration module 442 and the
VC Manager configuration module 446a. The application
configuration module 442 is used to control configuration of
various applications in the network node 110. For example,
the application configuration module 442 configures chassis
supervisor module 420, VLLAN manager application module
410, STP application module 412, multi-chassis manager
424, etc. The VC Manager configuration module 446a
includes configuration parameters and control commands
processed by the virtual chassis manager 400. The VC man-
ager configuration module 446¢ is updated and utilized in the
boot configuration module 440 when operating in standalone
mode. Commands that are specific to the local network node
and required to transition the network node to a virtual chassis
mode are included in the VC manager configuration module
446a.

However, when operating in virtual chassis mode, the VC
manager configuration module 4465 in VC mode configura-
tion module 450 is updated and utilized. By including the VC
manager configuration modules 446a and 4464 in the boot
configuration module 440 and VC mode configuration mod-
ule 450, the network node 110 is operable to perform virtual-
chassis related configurations and functions while operating
in multi-chassis mode or standalone mode or virtual chassis
mode.

VC mode configuration module 450 includes a set of man-
agement commands that define resources and specify the
network node’s parameters and functions in virtual chassis
mode. The VC Boot configuration module 452 includes the
virtual chassis configurations 458a-» of the plurality of net-
work nodes in the virtual chassis system 100 while the VC
setup module 460 includes the local chassis configurations.

FIG. 10 illustrates a logical flow diagram of an embodi-
ment of a method 470 for determining an operation mode of
a network node 100 in a virtual chassis system 100. Chassis
supervisor module 420 needs to determine the operation
mode (e.g., virtual chassis, standalone or multi-chassis) of the
network node 110 at start up prior to configuration because
the operation mode determines whether the chassis supervi-
sor module 420 will initiate the multi-chassis manager 424 or
the virtual chassis manager 400. In step 472, the network node
starts up and in step 474, chassis supervisor module 420
determines whether the VC setup module 460 (vesetup.cfg) is
present in the network node 110. When the VC setup module
460 (vcsetup.cfg) is not present, the network node is not
operating in virtual chassis mode, and configuration manager
module 422 parses the Boot Configuration Module 440
(boot.cfg file) in step 476 for operation in standalone or
multi-chassis mode. The multi-chassis manager 424 is then
initiated for processing of the Boot Configuration Module
440 (boot.cfg file) in step 4781.

When the VC setup module 460 (vesetup.cfg) is present in
step 474, the network node operates in virtual chassis mode,
and chassis supervisor module 420 initiates virtual chassis
manager 400. The chassis supervisor module 420 sets a
parameter called “virtual chassis mode” in a shared memory
file used by other applications during the start-up process in
step 480 to indicate virtual chassis mode operation. The con-
figuration manager module 422 then parses the virtual chassis
configuration modules, VC setup module 460 (vcsetup.cfg)
and VC boot configuration module (veboot.cfg), and initiates
the virtual chassis manager 400 in step 482. In step 484, the
virtual chassis manager 400 confirms that the VC setup mod-
ule 460 (vesetup.cfg) includes valid virtual-chassis configu-
rations (e.g, a valid chassis ID). Otherwise, the virtual chassis
manager 400 informs the chassis supervisor module 420 that
the virtual chassis mode has failed. The chassis supervisor

US 9,148,389 B2

17

module 422 then disables the port interfaces and VFL mem-
ber ports. As such, a network node 110 that has a VC setup
module 460 (vesetup.cfg) file but its contents are invalid (e.g.
out of range chassis ID, corrupted file, manually edited), will
not become operational. No attempt is made to operate the
network node 110 in standalone mode because, in some sce-
narios, this may create network problems due to conflicts
between the standalone configuration and the virtual chassis
configuration of another network node 110 in the virtual
chassis system 100.

FIG. 11 illustrates a logic flow diagram of an embodiment
of'a method 500 for configuring a network node 110 at start-
up in virtual chassis mode. At system start up, when the
network node 110 is determined to be operating in virtual-
chassis mode in step 502 with valid configurations, the virtual
chassis manager 400 processes configuration commands in
the VC Setup Module 460 to transition the network node 110
into the virtual chassis system 100. In this initial phase, the
virtual chassis manager 400 however does not process the VC
boot configuration module 452 commands until a master
network node 110 is known and topology database 144 is built
by the network node 100. Table 6 below illustrates configu-
ration of the network node 110 in this initial phase. Note that
although Table 6 depicts only two network nodes, any number
of network nodes is supported. The Runtime Configuration
parameter in Table 6 illustrates the modules or set of com-
mands processed by the network nodes 110 during this initial
phase.

TABLE 6

Chassis ID =1 Chassis ID =2

vesetupl.cfg
vebootl.cfg
Runtime Configuration
vesetupl.cfg

vesetup2.cfg
veboot2.cfg
Runtime Configuration
vesetup2.cfg

After a master network node is elected and topology data-
base is built in step 506, the second phase of configuration
processing occurs. During the second phase, the master net-
work node 110 in the virtual chassis system 100 performs a
merge of the VC boot configuration module 452 in the master
network node (e.g., vebootl.cfg) and the slave network nodes
(e.g., veboot2.cfg) in step 508. When a network node fails to
have the same set of designated configurations in its VC boot
configuration module 452, then the slave network node
retrieves the configurations from the master network node
and overwrites its own files. The slave network node may then
need to reboot so that the new set of parameters takes effect.
When the designated configurations of the VC boot configu-
ration module 452 are copied, the copied VC boot configura-
tion module 452 (e.g., vcbootl.cfg) is then processed by the
slave network nodes in step 510. Table 7 illustrates the con-
figuration of the network nodes during the second phase.

TABLE 7

Chassis ID = 1 (Master) Chassis ID = 2 (Slave)

vesetupl.cfg

vebootl.cfg

Runtime Configuration
vesetupl.cfg + vebootl.cfg

vesetup2.cfg

vebootl.cfg

Runtime Configuration
vesetup2.cfg + vebootl.cfg

The VC boot configuration module 452 of the master net-
work node (vebootl.cfg) has now been copied to the slave
network node 2. To preserve the configurations from the slave
network node, the master network node parses the configu-

10

15

20

25

30

35

40

45

50

55

60

65

18

ration commands in the slave network node’s VC boot con-
figuration module (vcboot2.cfg). The parsing may be per-
formed offline or by an element manager or network manager.
The conflicting commands in the slave’s VC boot configura-
tion module (veboot2.cfg) are determined and are saved for
analysis. The master network node eliminates the conflicting
commands and writes the non-conflicting commands into a
merged VC boot configuration module 452 (vcboot2'.cfg) for
the slave network nodes in step 512.

In a final stage, the merged VC boot configuration module
452 (veboot2'.cfg) is copied to the slave network nodes in the
virtual chassis system. The VC boot configuration module
452 is then executed by the network nodes 110 in step 514.
Table 8 illustrates the configuration of the network nodes 110
after this final phase.

TABLE 8

Chassis ID = 1 (Master) Chassis ID =2

vesetupl.cfg

vebootl.cfg

Runtime Configuration

vesetupl.cfg + vebootl.cfg + veboot2'.cfg

vesetup2.cfg

veboot2.cfg

Runtime Configuration
vesetup2.cfg + vebootl.cfg +
veboot2'.cfg

As a result, the configuration of the slave network nodes
110 are utilized except for conflicting commands without a
need to reboot each slave network node 110. In addition, the
configuration of the slave network nodes 110 is preserved.

FIG. 12 illustrates a schematic block diagram of an
embodiment of configuration conversion from standalone to
virtual-chassis mode. The configuration parameters of a net-
work node 110 need to be converted when transitioning from
standalone mode to virtual chassis mode. For example,
parameter conversion from standalone to virtual-chassis
mode requires modifying port configuration formats from
0/<slot>/<port> to <chassis>/<slot>/<port>. To transition a
network node 110 in standalone mode, the network node 110
is configured with certain virtual chassis parameters in VC
Setup Module 460 (vesetup.cfg). For example, element man-
ager module 406 transmits commands (such as through a
command line interface) to configure the network node with
the virtual chassis parameters. These virtual chassis param-
eters include, e.g., chassis ID, chassis group, chassis priority,
VFL link creation and configuration. Element manager mod-
ule 406 then enters a convert configuration command that
initiates conversion of configurations by the configuration
manager module 422. The configuration manager module
422 converts parameters from the Boot Configuration Mod-
ule 440 to the VC Boot Configuration Module 452 and VC
Setup Module 460 as shown in FIG. 12. The Boot Configu-
ration Module 440 may need to be resaved or renamed (e.g.,
Saved Boot Configuration Module 462) when the module is
currently running in standalone mode.

FIG. 13 illustrates a schematic block diagram of an
embodiment of configuration conversion from virtual-chassis
mode to standalone mode. The configuration of a network
node 110 needs to be converted when transitioning from
standalone mode to virtual chassis mode. For example, con-
figuration conversion from standalone mode to virtual chassis
mode requires modifying port configuration formats from
<chassis>/<slot>/<port> to 0/<slot>/<port>. Element man-
ager module 406 enters a convert configuration command that
initiates conversion of configurations by the configuration
manager module 422 to standalone mode. The configuration
manager module 422 converts parameters from the VC Boot
Configuration Module 452 and VC Setup Module 460 to the

US 9,148,389 B2

19
Boot Configuration Module 440 as shown in FIG. 13. The VC
Boot Configuration Module 452 and VC Setup Module 460
may need to be resaved or renamed (e.g., Saved VC Boot
Configuration Module 464 and Saved VC Setup Module 468)
when the modules are currently running in standalone mode.

In a virtual chassis system 100, when failures are detected
in the master network node 110, its status may be changed
from an active to an inactive state. Such failures include, e.g.
a power-off, inability to communicate by the CMM or other
modules of the master network node or failure of VFL 120
links coupled to the master network node. Upon occurrence
of a failure, the remaining active network nodes elect a new
master network node. Inan embodiment, the remaining active
network nodes retain the master MAC address of the failed
master network node. In another embodiment, the remaining
active network nodes adopt the local MAC address of the
newly elected master network node as the new Virtual Chassis
MAC address of the virtual chassis system 100.

FIG. 14 illustrates a schematic block diagram of an
embodiment of master address retention in a virtual chassis
system 100. Due to a malfunction or schedule power down
maintenance or an inoperable VFL 120 link or other failure,
master network node 110a is not able to communicate with
the remaining nodes 1105, 110c¢ in the virtual chassis system
100. The remaining network nodes 1105 and 110c¢ elect a new
master network node, in this example, network node 1105. In
this embodiment, the remaining network nodes 1105 and
110c¢ retain the MAC address of the prior master network
node 110a as the virtual chassis MAC address for the virtual
chassis system 100. However, the prior master network node
110a is removed from the topology database 144 and MAC
matrix of the remaining active network nodes 1105 and 110c.
This embodiment is termed master MAC retention due to the
retention of the prior master MAC address as the virtual
chassis MAC address by the remaining active network nodes
110.

FIG. 15 illustrates a schematic block diagram of an
embodiment of master address release in a virtual chassis
system 100. Due to a malfunction or schedule power down
maintenance or an inoperable VFL 120 link or other failure,
master network node 110a is not able to communicate with
the remaining nodes in the virtual chassis system 100. The
remaining network nodes 1105 and 110c¢ elect a new master
network node, in this example, network node 1105. In this
embodiment, the remaining network nodes 1105 and 110c¢
release the MAC address of the prior master network node
1105 as the virtual chassis MAC address. The remaining
active network nodes 1106 and 110¢ adopt the local MAC
address of the newly elected master network node 1105 as the
virtual chassis MAC address for the virtual chassis system
100. The prior master network node 110aq is removed from the
topology database and MAC matrix of the remaining active
network nodes 1105 and 110c. This embodiment is termed
master MAC release due to the release of the inactive prior
master MAC address as the virtual chassis MAC address.

The remaining network nodes 110 determine to retain or
release the MAC address of the inactive master network ele-
ment based on one or more factors. For example, one factor is
whether the MAC retention function is administratively
enabled. Another factor is whether the change in status of the
master network node causes a split in the virtual-chassis
system, e.g. the master network node and/or one or more
other nodes are still operating using the MAC address of the
failed prior master network node. A monitoring protocol or
other type of control protocol is used to determine the topol-
ogy before and after the failure of the master network node to
determine whether a split in the virtual chassis system has

10

15

20

25

30

35

40

45

50

55

60

65

20

occurred. When a split in the virtual chassis system has
occurred, e.g., the newly elected master network node deter-
mines that the prior master network node is still operating, it
releases the prior master MAC address as the virtual chassis
MAC address. The newly elected master network node may
also transition the user ports to a blocking state to prevent
duplicative operation of two MAC addresses as the virtual
chassis MAC address.

FIG. 16 illustrates a schematic block diagram of an
embodiment of master network node failure in a virtual chas-
sis system 100. In this example, the master network node
110q fails and is inoperable. The newly elected master net-
work node 1105 attempts to determine the status of the prior
master network node 110a by performing one or more pro-
tocols (Hello protocol, ping, etc.) or may request a status
update of the network node 110a from element manager
module 406. The newly elected master network node 1105
attempts to distinguish between a failure of the VFL link 120a
or a failure of the prior master network node 110a. When
newly elected master network node 11056 determines that a
failure of the prior master network node 110a has occurred,
e.g.itis no longer operable, the newly elected master network
node 1105 retains the MAC address of the prior master net-
work node 1104 as the virtual chassis MAC address as shown
in FIG. 14. When the prior master network node 110a is
removed from the active topology database 144 and the newly
elected master network node 11054 retains the prior master’s
MAC address, chassis supervisor module 420 starts a MAC
retention timer. The MAC retention timer is configurable and
sets a predetermined time period for the prior master network
node 1104 to reset and become active. Upon expiration of the
predetermined time period, a warning message is generated
by the newly elected master network node 11054 if the prior
master network node 110q is still inoperable. The virtual
chassis system manager may determine to issue a user com-
mand to release the retained MAC address and adopt the local
MAC address of the newly elected master network node 1105
as the virtual chassis MAC address for the virtual chassis
system 100.

FIG. 17 illustrates a schematic block diagram of an
embodiment of VFL failure in a virtual chassis system 100. In
this example, the VFL 120a coupled to the master network
node 110a fails while prior master network node 110«
remains operable. The newly elected master network node
1104 attempts to determine the status of the prior master
network node 110a by performing one or more protocols
(Hello protocol, ping, etc.) or may request a status update of
the network node 110qa from element manager module 406.
The newly elected master network node 1105 attempts to
distinguish between a failure of the VFL link 1204 or a failure
of the prior master network node 110a. When newly elected
master network node 1105 determines that a failure of the
VFL 120a has occurred but that the prior master network
node 110a is operable, the newly elected master network node
11054 releases the MAC address of the prior master network
node 110a as shown in FIG. 15. The remaining active network
nodes 1105 and 110¢ adopt the local MAC address of the
newly elected master network node 1105 as the virtual chassis
MAC address for the virtual chassis system 100. In addition,
the newly elected master network node 1105 transitions user
ports to a blocking state to prevent duplicative operation of
two MAC addresses as the virtual chassis MAC address. The
release of the MAC address of the prior master network node
110a also affects other layer 2 and layer 3 services. For
example, spanning tree protocol and LACP may need to

US 9,148,389 B2

21

reconfigure and/or restart while layer 3 packets may need to
be transmitted to neighboring nodes in response to the MAC
address change.

FIG. 18 illustrates a logic flow diagram of an embodiment
of a method 600 for recovery from a failure of a master
network node in a virtual chassis system 100. In step 602, due
to a malfunction or schedule power down maintenance or an
inoperable VFL 120 link or other failure, communication loss
is detected with the master network node in the virtual chassis
system 100. The remaining network nodes in the virtual chas-
sis system elect a new master network node in step 604. In
step 606, the newly elected master network node determines
whether a MAC retention function is enabled. If so, in step
608, the newly elected master network node determines
whether the failure causes a split in the virtual-chassis system,
e.g. the master network node is inoperable or still operating
using its master MAC address. When the master network
node is determined to be inoperable, the remaining network
nodes retain the MAC address of the prior master network
node 110a as the virtual chassis MAC address for the virtual
chassis system 100 in step 610. In step 612, a MAC retention
timer begins to time a predetermined time period. Upon expi-
ration of the predetermined time period in step 614, a warning
message is generated by the newly elected master network
node if the prior master network node 110a is still inoperable.

When the newly elected master network node determines
that the prior master network node is still operating in step
608 or that a MAC retention function is disabled in step 606,
it releases the MAC address of the prior master network node
as the virtual chassis MAC address in step 616. The remaining
active network nodes adopt the local MAC address of the
newly elected master network node as the virtual chassis
MAC address for the virtual chassis system 100 in step 618.

FIG. 19 illustrates a schematic block diagram of an
embodiment for a remote debugging system 700. The remote
debugging system 700 is operable to access application mod-
ules 720 on remote network nodes 1105 from a local network
node 110q in a virtual chassis system 100. Though described
with respect to a multi-slot chassis based node architecture in
a virtual chassis system 100, the remote debugging system
700 is operable in other types of network configurations and
node architectures.

The remote debugging module 702 includes a redirection
module 704, remote access module 706 and management
interface module 708. The remote debugging module 702
may be implemented on element manager module 406 or on
any other processing module or computing device operably
coupled locally or remotely to network node 110qg in the
virtual chassis system 100. The remote debugging module
702 is operable to communicate with the network node 110«
using various types of communication protocols, such as
telnet session, ssh session, etc. In an embodiment the remote
debugging module 702 communicates a debug management
command 710 to a control manager module (CMM) 150 in a
local network node 110a4.

In an embodiment, debug management command 710 is
received by chassis supervisor module 420 of the CMM 150
of' network node 110a, though other management modules or
applications may process the debug management command
710 in addition to or alternatively from the chassis supervisor
module 420 of the CMM 150. The chassis supervisor module
420 processes the debug management command 710 and
generates a process identification (ID) and debug command
712 for execution by the remote network node 1105. The
process ID or thread identifies a process of an application
module 720 for debugging by the debug command. Debug
program module 714 receives the process ID and debug com-

10

15

20

25

30

35

40

45

50

55

60

65

22

mand and initiates debug script module 716 in the remote
network node 1105. The debug script module 716 is a script
that preferably initiates batch execution of a number of com-
mands in the identified process in application module 720.
This batch execution is called debug function 722. The redi-
rect object 724 redirects the output of the debug function 722
to a preselected destination. The remote access module 706 is
operable to execute a command to retrieve the output from the
preselected destination for storage on the local network node
110a in storage module 728 in output file 726. The output file
726 may then be accessed and reviewed by the remote debug-
ging module 702.

FIG. 20 illustrates a logic flow diagram of an embodiment
of' a method for redirection of an output of a remote debug
module 702. The redirection module 704 is operable to redi-
rect an output of a process after execution of the debug func-
tion 722. The output is redirected to a selected location or
device, such as a file in a file directory of a virtual terminal
(e.g. telnet, ssh), locally connected terminal or remote termi-
nal. In step 752, a destination of the output of the process is
selected and a redirection object 724 is saved with the
selected destination. In step 754, the standard output file
descriptor, such as a file and file directory, of the process is
stored. In step 756, after execution of the debug function 722,
the redirection object 724 redirects the output of the process
to the selected destination. In step 758, the redirection object
724 is deleted and the standard output file descriptor is
restored.

FIG. 21 illustrates a logic flow diagram of an embodiment
of'a method 760 for remote access of a network node 110 in
the virtual chassis system 100. The remote access module 706
is operable to provide access for management functions to a
remote network node. For example, the remote access module
706 is operable to access a network interface module 152, a
CMM 150, application module, etc. located on a remote
network node through a local network node in the virtual
chassis system 100. Though in an embodiment described
herein, debug functions are used as an example, other man-
agement functions, such as management commands for
operation or configuration, status checks, etc. may also utilize
the remote access module 706. In step 762, the remote access
module 706 establishes a remote session with the target net-
work node or module thereof. The remote access module 706
may include in an embodiment an ssh client application for
logging into the remote network node and executing com-
mands though other applications and protocols, such as rlo-
gin, and rsh, mobile shell (MOSH) or other remote access
applications may also be implemented. The remote access
module 706 opens the remote session with the target network
node or module thereof and allows for the execution of the
debug function 722 in step 764. The output of the debug
function is stored in the selected directory in step 766 as
described with respect to FIG. 20. The remote access module
706 executes a command to retrieve the stored file from the
selected destination in step 768.

FIG. 22 illustrates a logic flow diagram of an embodiment
of'a method 770 for a management interface module 708. The
management interface module 708 is operable to provide a
graphical user interface for entering and accessing debug
management commands 710. The management interface
module 708 provides assistance on parameters and command
names needed for entering the debug management commands
710. In step 772, the management interface module 708 pro-
vides a set of debug management commands in a graphical
user interface (GUI) and in step 774, receives the manage-
ment commands through the GU], such as a command line
interface or other type of GUI. In step 776, the management

US 9,148,389 B2

23
command is processed by the chassis supervisor module 420
of the CMM 150 of network node 110a, though other man-
agement modules or applications may process the debug
management command 710 in addition to or alternatively
from the chassis supervisor module 420 of the CMM 150. In
step 778, the chassis supervisor module 420 informs manage-
ment of command execution to prevent interference with
other tasks and prevent acceptance of other management
commands before completion of current command execution.

The remote debugging module 702 enhances debugging of
application modules in remote network nodes by providing
access to the remote network nodes without the need of direct
console access. It helps to automate complex operations and
deliver a user friendly interface and minimize impact on
current running application modules.

The network nodes 1110 in a virtual chassis system 100 are
treated as a single logical device with a common virtual
chassis MAC address. As such, external nodes 112 are oper-
able to actively forward traffic on all the links of a VC-LAG
114 operatively coupled to two or more network nodes 110.
This feature enables multiple homing of the external nodes
112 to the network nodes 110 without requiring spanning tree
protocols between the external nodes and network nodes
while still facilitating a carrier-grade detection and conver-
gence time to edge uplink failures as well as network node
110 failures. Another advantage of the active forwarding
mode of all the VC-LAG 114 uplinks to the virtual chassis
system 100 is increased efficiency of the use of bandwidth of
the VC-LAG 114 links. The virtual chassis system 100 thus
provides a resilient network between network nodes having
one or more different types of node architectures in one or
more different types of network topologies.

As may also be used herein, the term(s) “operably coupled
t0”, “coupled to”, and/or “coupling” includes direct coupling
between items and/or indirect coupling between items via an
intervening item (e.g., an item includes, but is not limited to,
a component, an element, a circuit, and/or a module) where,
for indirect coupling, the intervening item does not modify
the information of a signal but may adjust its current level,
voltage level, and/or power level. As may further be used
herein, inferred coupling (i.e., where one element is coupled
to another element by inference) includes direct and indirect
coupling between two items in the same manner as “coupled
to”.

As may even further be used herein, the term “operable to”
or “operably coupled to” indicates that an item includes one
or more of power connections, input(s), output(s), etc., to
perform, when activated, one or more its corresponding func-
tions and may further include inferred coupling to one or
more other items. As may still further be used herein, the term
“associated with”, includes direct and/or indirect coupling of
separate items and/or one item being embedded within
another item, or one item configured for use with or by
another item. As may be used herein, the term “compares
favorably”, indicates that a comparison between two or more
items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal 1 has a
greater magnitude than signal 2, a favorable comparison may
be achieved when the magnitude of signal 1 is greater than
that of signal 2 or when the magnitude of signal 2 is less than
that of signal 1.

As may also be used herein, the terms “processing mod-
ule”, “processing circuit”, and/or “processing unit” may be a
single processing device or a plurality of processing devices.
Such a processing device may be a microprocessor, micro-
controller, digital signal processor, microcomputer, central
processing unit, field programmable gate array, program-

15

20

25

40

45

50

55

24

mable logic device, state machine, logic circuitry, analog
circuitry, digital circuitry, and/or any device that manipulates
signals (analog and/or digital) based on hard coding of the
circuitry and/or operational instructions. The processing
module, module, processing circuit, and/or processing unit
may be, or further include, memory and/or an integrated
memory element, which may be a single memory device, a
plurality of memory devices, and/or embedded circuitry of
another processing module, module, processing circuit, and/
or processing unit. Such a memory device may be a read-only
memory, random access memory, volatile memory, non-vola-
tile memory, static memory, dynamic memory, flash memory,
cache memory, and/or any device that stores digital informa-
tion. Note that if the processing module, module, processing
circuit, and/or processing unit includes more than one pro-
cessing device, the processing devices may be centrally
located (e.g., directly coupled together via a wired and/or
wireless bus structure) or may be distributedly located (e.g.,
cloud computing via indirect coupling via a local area net-
work and/or a wide area network). Further note that if the
processing module, module, processing circuit, and/or pro-
cessing unit implements one or more of its functions via a
state machine, analog circuitry, digital circuitry, and/or logic
circuitry, the memory and/or memory element storing the
corresponding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element may store,
and the processing module, module, processing circuit, and/
or processing unit executes, hard coded and/or operational
instructions corresponding to at least some of the steps and/or
functions illustrated in one or more of the Figures. Such a
memory device or memory element can be included in an
article of manufacture.

The present invention has been described above with the
aid of method steps illustrating the performance of specified
functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention. Further, the boundaries of these functional
building blocks have been arbitrarily defined for convenience
of description. Alternate boundaries could be defined as long
as the certain significant functions are appropriately per-
formed. Similarly, flow diagram blocks may also have been
arbitrarily defined herein to illustrate certain significant func-
tionality. To the extent used, the flow diagram block bound-
aries and sequence could have been defined otherwise and
still perform the certain significant functionality. Such alter-
nate definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the scope and
spirit of the claimed invention. One of average skill in the art
will also recognize that the functional schematic blocks, and
other illustrative blocks, modules and components herein,
can be implemented as illustrated or combined or separated
into discrete components, application specific integrated cir-
cuits, processors executing appropriate software and the like
or any combination thereof.

The present invention is described herein, at least in part, in
terms of one or more embodiments. An embodiment is
described herein to illustrate the present invention, an aspect
thereof, a feature thereof, a concept thereof, and/or an
example thereof. A physical embodiment of an apparatus, an
article of manufacture, a machine, and/or of a process that

US 9,148,389 B2

25

embodies the present invention may include one or more of
the aspects, features, concepts, examples, etc. described with
reference to one or more of the embodiments discussed
herein. Further, from figure to figure, the embodiments may
incorporate the same or similarly named functions, steps,
modules, etc. that may use the same or different reference
numbers and, as such, the functions, steps, modules, etc. may
be the same or similar functions, steps, modules, etc. or dif-
ferent ones.

Unless specifically stated to the contra, signals to, from,
and/or between elements in a figure presented herein may be
analog or digital, continuous time or discrete time, and single-
ended or differential. For instance, if a signal path is shown as
a single-ended path, it also represents a differential signal
path. Similarly, if a signal path is shown as a differential path,
it also represents a single-ended signal path. While one or
more particular architectures are described herein, other
architectures can likewise be implemented that use one or
more data buses not expressly shown, direct connectivity
between elements, and/or indirect coupling between other
elements.

The term “module” is used in the description of the various
embodiments of the present invention. A module includes a
processing module (as described above), a functional block,
hardware, and/or software stored on memory operable to
perform one or more functions as described herein. Note that,
if the module is implemented via hardware, the hardware may
operate independently and/or in conjunction with software
and/or firmware. When a module is implemented as software
stored in memory, the module is operable to use a processing
module or other hardware to execute the software stored in
memory in the module to perform the functions as described
herein. A module described herein may include one or more
sub-modules, each of which may be one or more modules, be
incorporated into one or more other modules orinclude one or
more other modules.

While particular combinations of various functions and
features of the present invention are expressly described
herein, other combinations of these features and functions are
likewise possible. The embodiment described herein are not
limited by the particular examples described and may include
other combinations and embodiments.

What is claimed is:

1. A network node in a virtual chassis system, comprising:

a plurality of virtual fabric links (VFLs) operably coupled
between the network node and a plurality of other net-
work nodes in the virtual chassis system;

a control management module operable to generate a
topology database that includes a chassis identification
and local address of a master network node in the virtual
chassis system and chassis identifications and local
addresses of the plurality of other network nodes in the
virtual chassis system, the control management module
operable to:
adopt the local address of the master network node in the

virtual chassis system as a virtual chassis address of
the network node for addressing of the virtual chassis
system by external nodes; and
at least a first network interface module operable to:
store one or more address tables that include destination
addresses associated with hardware device informa-
tion of the plurality of other network nodes in the
virtual chassis system;

receive an incoming packet on an external port interface,
wherein the incoming packet includes a first destina-
tion address;

10

15

20

25

30

35

40

45

50

60

65

26

determine from the one or more address tables destina-
tion hardware device information of one of the plu-
rality of other network nodes in the virtual chassis
system associated with the first destination address,
that includes access a first forwarding table having a
list of destination address entries and associated hard-
ware device information of the one of the plurality of
other network nodes in the virtual chassis system
associated with the first destination address, wherein
the associated hardware device information ofthe one
of the plurality of other network nodes includes a
chassis identification of the one of the plurality of
other network nodes;

access a second address table that includes a list of
chassis identifications and associated VFL identifiers,
wherein the associated VFL identifiers identify at
least one VFL for forwarding a packet to one of the
plurality of other network nodes identified by the
chassis identification;

generate a packet with pre-pended header from the
incoming packet, wherein the pre-pended header
includes the destination hardware device information
of the one of the plurality of other network nodes in
the virtual chassis system; and

transmit the packet with pre-pended header over one of
the plurality of virtual fabric links to the one of the
plurality of other network nodes in the virtual chassis
system.

2. The network node of claim 1, wherein the at least a first

network interface module is operable to:

determine from the second access table a VFL identifier
associated with the chassis identification of the one of
the plurality of other network nodes in the virtual chassis
system associated with the first destination address; and

transmit the packet with pre-pended header over the one of
the plurality of virtual fabric links associated with the
VFL identifier to the one of the plurality of other net-
work nodes in the virtual chassis system associated with
the first destination address.

3. The network node of claim 2, wherein the first network

interface module comprises:

a switching circuit that includes a plurality of external port
interfaces, wherein the first network interface module
receives the incoming packet on one of the plurality of
external port interfaces; and

a queuing circuit that includes a queue management mod-
ule.

4. The network node of claim 3, wherein the switching

circuit further includes:

a pre-pended packet header interface (PPHI) operable to
generate the packet with pre-pended header, wherein the
pre-pended header includes the destination hardware
device information.

5. A network node in virtual chassis system, comprising:

a plurality of virtual fabric links (VFLs) operably coupled
between the network node and a plurality of other net-
work nodes in the virtual chassis system;

a control management module operable to generate a
topology database, wherein the topology database
includes a chassis identification and local address of a
master network node in the virtual chassis system and
chassis identifications and local addresses of the plural-
ity of other network nodes in the virtual chassis system,
the control management module operable to:
adopt the local address of the master network node in the

virtual chassis system as a virtual chassis address of
the network node for addressing of the virtual chassis

US 9,148,389 B2

27

system by external nodes when the network node is
operating in a virtual chassis mode; and

at least a first network interface module operable to:

receive a packet with a destination address from an
external node;

access one or more forwarding tables to determine hard-
ware device information of one of the plurality of
other network nodes associated with the destination
address, wherein the hardware device information
includes a VFL identifier of at least one VFL coupled
to the network node and the one of the plurality of
other network nodes associated with the destination
address; and

transmitting the packet over the at least one VFL coupled
to the network node and the one of the plurality of
other network nodes associated with the first destina-
tion address.

6. The network node of claim 5, wherein the control man-
agement module is further operable to:

initiate a first configuration module when the network node

is operating in a virtual chassis mode; and

initiate a second configuration module when the network

node is operating in a standalone mode.

7. The network node of claim 6, wherein the control man-
agement module is further operable to:

transition from a standalone mode to a virtual chassis mode

by reconfiguring parameters of the hardware device
information and initiating the first configuration mod-
ule.

8. The network node of claim 5, wherein the control man-
agement module is further operable to:

receive a remote debug management command to redirect

an output of a process in response to a debug function in
the network node;

store a standard output descriptor of the process;

redirect the output of the process in response to the debug

function to a selected destination; and

restore the standard output descriptor of the process.

9. A method for a network node in a virtual chassis system,
wherein a plurality of virtual fabric links (VFLs) are operably
coupled between the network node and a plurality of other
network nodes in the virtual chassis system comprising:

generating a topology database that includes a chassis

identification and local address of a master network
node in the virtual chassis system and chassis identifi-
cations and local addresses of the plurality of the other
network nodes in the virtual chassis system;

adopting the local address of the master network node as a

virtual chassis address of the network node for address-
ing of the virtual chassis system be external nodes when
the network node is operating in a virtual chassis mode;

10

20

25

30

35

40

45

50

28

storing one or more address tables that include destination
addresses associated with hardware device information
of a plurality of other network nodes in the virtual chas-
sis system;
receiving an incoming packet on an external port interface,
wherein the packet includes a first destination address;

determining from the one or more address tables destina-
tion hardware device information of one of the plurality
of other network nodes in the virtual chassis system
associated with the first destination address;

generating a packet with pre-pended header from the

incoming packet, wherein the pre-pended header
includes the destination hardware device information of
the one of the plurality of other network nodes in the
virtual chassis system; and

transmit the packet with pre-pended header over one of the

plurality of virtual fabric links to the one of the plurality
of other network nodes in the virtual chassis system.
10. The method of claim 9, wherein determining from the
one or more address tables destination hardware device infor-
mation includes:
accessing a first forwarding table, wherein the first for-
warding table includes a list of destination address
entries and associated hardware device information of
one of the plurality of other network nodes in the virtual
chassis system associated with the first destination
address.
11. The method of claim 10, wherein the destination hard-
ware device information of the one of the plurality of other
network nodes in the virtual chassis system associated with
the first destination address includes a chassis identification
of'the one of the plurality of other network nodes.
12. The method of claim 11, further comprising:
accessing a second address table, wherein the second
address table includes a list of chassis identifications and
associated VFL identifiers, wherein the associated VFL
identifiers identify at least one VFL for forwarding a
packet to one of the plurality of other network nodes
identified by the chassis identification.
13. The method of claim 12, further comprising:
determining from the second access table a VFL identifier
associated with the chassis identification of the one of
the plurality of other network nodes in the virtual chassis
system associated with the first destination address; and

transmitting the packet with pre-pended header over the
one of the plurality of virtual fabric links associated with
the VFL identifier to the one of the plurality of other
network nodes in the virtual chassis system associated
with the first destination address.

#* #* #* #* #*

